Cable fault location in power cables

Systematics for cable testing, diagnosis and cable fault location

T&D

CABLE JOINTS, CABLE TERMINATIONS, CABLE GLANDS, CABLE CLEATS, FEEDER PILLARS, FUSE LINKS, ARC FLASH, CABLE ROLLERS, CUT-OUTS

11KV 33KV CABLE JOINTS & CABLE TERMINATIONS
FURSE EARTHING
www.cablejoints.co.uk
Thorne and Derrick UK
Tel 0044 191 490 1547 Fax 0044 191 477 5371
Tel 0044 117 977 4647 Fax 0044 117 9775582

sebaKMT
Contents:

1. Testing, diagnosing and partial discharge measurements
2. Cable fault location

Regarding the task to be performed, a distinction must be made between two main groups:

Testing, diagnosing and partial discharge measurement
Condition-oriented maintenance

Localising all types of cable faults
Result-oriented maintenance

1. Testing, diagnosing and partial discharge measurement

Objective of the cable test:

- Checking quality before running and fitting a cable
- Correcting weak points in the cable which can jeopardise the operation

During the cable test, flash-overs are generated at the weak points in a cable. These faulty points must then be localised (cable fault location). Depending on the insulation and the test object, the following voltage forms are mandatory:

Paper-insulated lead-covered cable (PILC)  DC voltage
AC voltage 50 – 60 Hz
VLF (0.1 Hz)

PE/XLPE cable  AC voltage 50 – 60 Hz
VLF (0.1 Hz)

Components  DC voltage and AC voltage 50 – 60 Hz
Objective of the dielectric diagnosis and partial discharge measurement:
A non-destructive check for testing the condition of the insulation in cables and fittings and localising faulty points.

Dielectric diagnosing
- Integral check of how the cable has aged by means of IRC analysis (isothermal relaxation current analysis) in PE and XLPE cable insulation types
- Integral check of the moisture content by means of RVM analysis (return voltage measurement) in paper-insulated lead-covered cables

Partial discharge measurement (PD measurement)
Recording, location and evaluation of partial discharges (PD) in the insulation and fittings of medium voltage cables.
Remark: These subjects are dealt with separately in the following articles.

2. Localising all different types of cable faults
The steps necessary for determining fault locations can be sub-divided into five main categories.

1. Fault classification – identifying the type of fault
2. Pre-location – determining the distance to the fault
3. Route tracing – determining the route of the cable at the site
4. Pinpointing – determining the exact position of the cable at the site
5. Cable identification – determining the faulty cable amongst several cables
The following diagram shows the common procedure for identifying and locating cable faults:

- **Insulation test** (with 500 V or 1000 V)
  - Identifying faulty conductors and fault classification
  - Low resistive fault (R↓)
  - High resistive fault (R↑)

- **Resistance measurement**
  - Verification of fault classification
  - Voltage-dependent fault R(U)
  - Low resistive fault (R↓)

- **DC Test**
  - Determining flash-over voltage
  - Fault detected

- **Fault conversion**
  - Permanent deformation of the fault

- **TDR measurement** (Teleflex, IFL)
  - Pre-locating fault position

- **Pre-location High-voltage methods**
  - ARM, Decay, ICE
  - Pre-locating fault position

- **Route tracing and pinpointing**
  - Establishing cable route
  - Pinpointing fault position by means of acoustic and inductive method

- **Sheath fault pre-location**
  - (e.g. using the MFM 5-1)
  - Sheath fault detected

- **Test** (VLF, DC, sheath)
  - Testing the cable
  - Fault detected
  - Sheath fault detected
Measuring methods in cable fault location:

Insulation test, measuring the resistance of a fault

Testing

- DC test (determining the flash-over voltage)
- Sheath fault test
- VLF test (determining the flash-over voltage)

Pre-location

- Teleflex measurements (pulse reflection measurements, TDR measurements)
- ARM (Arc Reflection Method)
- ARM Plus (Arc Reflection Method Plus)
- ARM power burning
- Decay Plus (Arc Reflection Method – igniting the fault using DC generator)
- Decay (travelling wave method, oscillation method)
- Current catching (ICE)
- Three-phase current catching (ICE)
- ICE Plus (low-voltage networks only)
- High-voltage bridge method (pre-locating sheath faults)
- Voltage drop method (pre-locating sheath faults)

Fault conversion

- Burning
- Performance burning

Route tracing

- Line location
- Line routing

Pinpointing

- Audio frequency generator (twist field method, minimum turbidity method)
- Shock discharges (acoustic field method, acoustic pinpointing)
- Pinpointing sheath fault

Cable and phase identification

- Phase identification when earthed
- Phase identification and phase determination on live systems